Κολέγιο CITY College
Main Campus, Thessaloniki, Greece
You are here: Home /

Dr Manousos Klados

Senior Lecturer

Academic Position

Senior Lecturer

Academic Qualifications
PhD in Medicine (focus on Affective and Cognitive Neuroscience), Aristotle University of Thessaloniki, Greece 
MSc in Medical Informatics (focus on Computational Neuroscience), Aristotle University of Thessaloniki, Greece
BSc in Mathematics, Aristotle University of Thessaloniki, Greece
Office Strategakis Building, 6th floor
Office Hours

Open Door Policy

Email mklados@citycollege.sheffield.eu
Skype mklados
Twitter https://twitter.com/mklados
Linkedin https://www.linkedin.com/in/mklados/
Personal Website https://www.mklados.com/


I am a mathematician, with a M.Sc. in Computational Neuroscience and a PhD in the borders of Affective, Cognitive and Computation Neurosciences. I earned my PhD degree in 2014 from the School of Medicine of Aristotle University of Thessaloniki in Greece. From 2014-2016 I was a postdoctoral fellow in the Max Planck Institute for Human Cognitive and Brain Sciences in Leipzig (Germany), where I have studied the neuroanatomical and functional correlates of personality, while from 2016-2017 I have served as a senior research and teaching fellow in the Department of Psychology in TU Dresden in Germany, where I have studied the lifespan development of cortical networks. On 2017 I moved to UK, where I served as a lecturer at Aston University (Birmingham), until 2020. In 2018 I have completed the PGCert on Higher Education at Aston University, becoming a fellow of Higher Education Academy. I have authored 25 journal articles and more than 30 contributions in international conferences with posters and talks while my research interests include mathematical anxiety, brain networks, affective and personality neuroscience and biomedical signal processing. I have been rewarded several prizes and scholarships for my research excellence, while I chaired one international conference (SAN2016) and I was on the organization/international committee of several more. I am currently the coordinator of the large EU project funded my H2020-MC-RISE scheme, and co-PI of a Knowledge Transfer Partnership funded by Innovative UK. I am supervising 2 PhD students and several other MSc students. I am a fellow of Institute of Mathematics and Applications and Higher Education Academy. I have been invited to review research project in Italy and Romania, while I am regular reviewer for international journals, and regular external examiner of PhD examinations.

Teaching

CPY2219 - Research Methods in Psychology

CPY6124 - Fundamentals of Neuropsychology

CPY6125 -  Introduction in Research Methods in Neuropsychology

CPY6108 - Research Methods in Counseling Psychology

Research Interests

From a neuroscientific point of view, I am interested in affective and personality neurosciences, as well as in disorders that mainly affect the connectome. Based on these I am also interested in the applied aspect of neuroscience, and more specificialy with low cost devices. Some examples are the affective and personality computing, where I am trying to classify emotions and personality types using biosignals. From a methodological perspective, my main research interests are based mostly on human connectivity, and graph theoretical modeling of human's brain, as well as the modulation introduced in brain networks either by affective and/or cognitive stimuli or under pathological circumstances.

Publications

Nday, C. M., Plomariti, C. E., Nigdelis, V. D., Ntakakis, G., Klados, M., & Bamidis, P. D. (2020). Current trends of biomedical signal processing in neuroscience. In Neurotechnology: Methods, advances and applications (pp. 7–36). Institution of Engineering and Technology. https://doi.org/10.1049/PBHE019E_ch2

Klados, M. A., Konstantinidi, P., Dacosta-Aguayo, R., Kostaridou, V.-D., Vinciarelli, A., & Zervakis, M. (2020). Automatic Recognition of Personality Profiles Using EEG Functional Connectivity during Emotional Processing. Brain Sciences, 10(5), 278. https://doi.org/10.3390/brainsci10050278

Ros, T., Enriquez-Geppert, S., Zotev, V., Young, K. D., Wood, G., Whitfield-Gabrieli, S., Wan, F., Vuilleumier, P., Vialatte, F., Van De Ville, D., Todder, D., Surmeli, T., Sulzer, J. S., Strehl, U., Sterman, M. B., Steiner, N. J., Sorger, B., Soekadar, S. R., Sitaram, R., … Thibault, R. T. (2020). Consensus on the reporting and experimental design of clinical and cognitive-behavioural neurofeedback studies (CRED-nf checklist). Brain. https://doi.org/10.1093/brain/awaa009

Sciaraffa, N., Klados, M. A., Borghini, G., Flumeri, G. Di, Babiloni, F., & Aricò, P. (2020). Double-Step Machine Learning Based Procedure for HFOs Detection and Classification. Brain Sciences 2020, Vol. 10, Page 220, 10(4), 220. https://doi.org/10.3390/BRAINSCI10040220

Fenech, M., Seri, S., & Klados, M. (2019). High-Frequency Oscillations in Epilepsy: A Short Review. 2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE), 882–885. https://doi.org/10.1109/BIBE.2019.00164

Giannakaki, K., Giannakakis, G., Vorgia, P., Klados, M., & Zervakis, M. (2019). Automatic Absence Seizure Detection Evaluating Matching Pursuit Features of EEG Signals. 2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE), 886–889. https://doi.org/10.1109/BIBE.2019.00165

Klados, G. A., Zervakis, M., Dacosta-Aguayo, R., Fratini, A., & Klados, M. A. (2019). Towards a Novel Way to Predict Deficits After a Brain Lesion: A Stroke Example. 2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE), 737–741. https://doi.org/10.1109/BIBE.2019.00138

Baeuchl, C., Chen, H.-Y., Su, Y.-S., Hämmerer, D., Klados, M. A., & Li, S.-C. (2019). Interactive effects of dopamine transporter genotype and aging on resting-state functional networks. PLOS ONE, 14(5), e0215849. https://doi.org/10.1371/journal.pone.0215849

Klados, M. A., Paraskevopoulos, E., Pandria, N., & Bamidis, P. D. (2019). The Impact of Math Anxiety on Working Memory: A Cortical Activations and Cortical Functional Connectivity EEG Study. IEEE Access, 7, 1–1. https://doi.org/10.1109/ACCESS.2019.2892808

Pezoulas, V. C., Michalopoulos, K., Klados, M. A., Micheloyannis, S., Bourbakis, N. G., & Zervakis, M. (2019). Functional Connectivity Analysis of Cerebellum Using Spatially Constrained Spectral Clustering. IEEE Journal of Biomedical and Health Informatics, 23(4), 1710–1719. https://doi.org/10.1109/JBHI.2018.2868918

Ilg, L., Klados, M., Alexander, N., Kirschbaum, C., & Li, S.-C. (2018). Long-term impacts of prenatal synthetic glucocorticoids exposure on functional brain correlates of cognitive monitoring in adolescence. Scientific Reports, 8(1), 7715. https://doi.org/10.1038/s41598-018-26067-3

Jakobsen, E., Liem, F., Klados, M. A., Bayrak, Ş., Petrides, M., & Margulies, D. S. (2018). Automated individual-level parcellation of Broca’s region based on functional connectivity. NeuroImage, 170, 41–53. https://doi.org/10.1016/j.neuroimage.2016.09.069

Pezoulas, V. C., Athanasiou, A., Nolte, G., Zervakis, M., Fratini, A., Fotiadis, D. I., & Klados, M. A. (2018). FCLAB: An EEGLAB module for performing functional connectivity analysis on single-subject EEG data. 2018 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), 96–99. https://doi.org/10.1109/BHI.2018.8333378

Dacosta-Aguayo, R., Stephan-Otto, C., Auer, T., Clemente, I., Davalos, A., Bargallo, N., Mataro, M., & Klados, M. A. (2017). Predicting Cognitive Recovery of Stroke Patients from the Structural MRI Connectome Using a Naïve Bayesian Tree Classifier. 2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS), 413–418. https://doi.org/10.1109/CBMS.2017.106

Klados, M. A., Pandria, N., Micheloyannis, S., Margulies, D., & Bamidis, P. D. (2017). Math anxiety: Brain cortical network changes in anticipation of doing mathematics. International Journal of Psychophysiology, 122, 24–31. https://doi.org/10.1016/j.ijpsycho.2017.05.003

Klados, M. A., Pandria, N., Athanasiou, A., & Bamidis, P. D. (2017). An Automatic EEG Based System for the Recognition of Math Anxiety. 2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS), 409–412. https://doi.org/10.1109/CBMS.2017.107

Athanasiou, A., Klados, M. A., Pandria, N., Foroglou, N., Kavazidi, K. R., Polyzoidis, K., & Bamidis, P. D. (2017). A Systematic Review of Investigations into Functional Brain Connectivity Following Spinal Cord Injury. Frontiers in Human Neuroscience, 11. https://doi.org/10.3389/fnhum.2017.00517

Pezoulas, V., Zervakis, M., Micheloyannis, S., & Klados, M. A. (2017). Resting-state functional connectivity and network analysis of cerebellum with respect to crystallized IQ and gender. In Frontiers in Human Neuroscience (Vol. 11, p. 189). http://journal.frontiersin.org/article/10.3389/fnhum.2017.00189

Klados, M., Lauckner, M., Jackobsen, E., & Daniel, M. (2016). Characterizing the Primary Spectrum of Personality and Brain Connectivity. 22nd Annual Meeting of the Organization for Human Brain Mapping.

Manousos, K. (2016). Human Connectome as a big-data problem: New approaches for analysis and visualization. Frontiers in Human Neuroscience, 10. https://doi.org/10.3389/conf.fnhum.2016.220.00012

Alkinoos, A., Manousos, K., Nicolas, F., Kyriaki Rafailia, K., Konstantinos, P., & Panagiotis, B. (2016). Reorganization of brain networks after spinal cord injury: a qualitative synthesis of the literature. Frontiers in Human Neuroscience, 10. https://doi.org/10.3389/conf.fnhum.2016.220.00036

Pezoulas, V., Zervakis, M., Micheloyannis, S., & Klados, M. A. (2016). Investigating the correlation between crystallized IQ and network metrics in cerebellum using resting-state fMRI. Frontiers in Human Neuroscience, 10. https://doi.org/10.3389/conf.fnhum.2016.220.00013

Athanasiou, A., Klados, M. A., Styliadis, C., Foroglou, N., Polyzoidis, K., & Bamidis, P. D. (2016). Investigating the role of alpha and beta rhythms in functional motor networks. Neuroscience. https://doi.org/10.1016/j.neuroscience.2016.05.044

Klados, M. A., Styliadis, C., Frantzidis, C. A., Paraskevopoulos, E., & Bamidis, P. D. (2016). Beta-Band Functional Connectivity is Reorganized in Mild Cognitive Impairment after Combined Computerized Physical and Cognitive Training. Frontiers in Neuroscience, 10. https://doi.org/10.3389/fnins.2016.00055

Athanasiou, A., Klados, M. A., Astaras, A., Foroglou, N., Magras, I., & Bamidis, P. D. (2016). State of the Art and Future Prospects of Nanotechnologies in the Field of Brain-Computer Interfaces. In XIV Mediterranean Conference on Medical and Biological Engineering and Computing (pp. 456–460). Springer. https://doi.org/10.1007/978-3-319-32703-7_89

Klados, M. A., & Bamidis, P. D. (2016). A semi-simulated EEG/EOG dataset for the comparison of EOG artifact rejection techniques. Data in Brief, 8, 1004–1006. https://doi.org/10.1016/j.dib.2016.06.032

Bayrak, Ş., Margulies, D., Bamidis, P., & Klados, M. A. (2016). Mathematical Anxiety influences the cortical connectivity profiles in lower alpha band during working memory tasks. Frontiers in Human Neuroscience, 10. https://doi.org/10.3389/conf.fnhum.2016.220.00001

Klados, M. A., Simos, P., Micheloyannis, S., Margulies, D., & Bamidis, P. D. (2015). ERP measures of math anxiety: how math anxiety affects working memory and mental calculation tasks? Frontiers in Behavioral Neuroscience, 9. https://doi.org/10.3389/fnbeh.2015.00282

Jakobsen, E., Klados, M., Zelmer, J., Goulas, A., & Margulies, D. S. (2015). Automated individual-level parcellation of Broca’s region based on resting-state functional connectivity. 21st Annual Meeting of the Organization for Human Brain Mapping (OHBM). http://pubman.mpdl.mpg.de/pubman/item/escidoc:2175891/component/escidoc:2175890/OHBM_poster2015.pdf

Bamparopoulos, G., Klados, M. A., Papathanasiou, N., Antoniou, I., Micheloyannis, S., & Bamidis, P. D. (2014). Studying Functional Brain Networks to Understand Mathematical Thinking: A Graph-Theoretical Approach. In L. M. Roa Romero (Ed.), XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013 SE - 194 (Vol. 41, pp. 783–786). Springer International Publishing. https://doi.org/10.1007/978-3-319-00846-2_194

Frantzidis, C. A., Vivas, A. B., Tsolaki, A., Klados, M. A., Tsolaki, M., & Bamidis, P. D. (2014). Functional disorganization of small-world brain networks in mild Alzheimer’s Disease and amnestic Mild Cognitive Impairment: an EEG study using Relative Wavelet Entropy (RWE). Frontiers in Aging Neuroscience, 6, 224. https://doi.org/10.3389/fnagi.2014.00224

Klados, M. A. (2014). Beyond the Clinical Use of Neurofeedback. Journal of Psychology & Clinical Psychiatry, 1(3). https://doi.org/10.15406/jpcpy.2014.01.00014

Bamidis, P. D., Vivas, A. B., Styliadis, C., Frantzidis, C., Klados, M., Schlee, W., Siountas, A., & Papageorgiou, S. G. (2014). A review of physical and cognitive interventions in aging. Neuroscience & Biobehavioral Reviews, 44, 206–220. https://doi.org/10.1016/j.neubiorev.2014.03.019

Klados, M. A., Styliadis, C., & Bamidis, P. D. (2014). A Short Review on Emotional Recognition Based on Biosignal Pattern Analysis. XIII Mediterranean Conference on Medical and Biological Engineering and Computing, 787–790. https://doi.org/10.1007/978-3-319-00846-2_195

Klados, M. A., Nikolaidou, M., Konstantinidis, E., Chifari, A., & Bamidis, P. D. (2013). A short review of computerized monitoring systems for ADHD. Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems, 556–557. https://doi.org/10.1109/CBMS.2013.6627875

Klados, M. A., Kanatsouli, K., Antoniou, I., Babiloni, F., Tsirka, V., Bamidis, P. D., & Micheloyannis, S. (2013). A Graph theoretical approach to study the organization of the cortical networks during different mathematical tasks. PloS One, 8(8), e71800. https://doi.org/10.1371/journal.pone.0071800

Klados, M. A., Lithari, C., Antoniou, I., Semertzidou, A., Bratsas, C., Micheloyannis, S., & Bamidis, P. D. (2012). Towards a graph theoretical approach to study gender lateralization effect in mathematical thinking. 2012 IEEE 12th International Conference on Bioinformatics & Bioengineering (BIBE), 666–670. https://doi.org/10.1109/BIBE.2012.6399746

Athanasiou, A., Lithari, C., Kalogianni, K., Klados, M. A., & Bamidis, P. D. (2012). Source Detection and Functional Connectivity of the Sensorimotor Cortex during Actual and Imaginary Limb Movement: A Preliminary Study on the Implementation of eConnectome in Motor Imagery Protocols. Advances in Human-Computer Interaction, 2012, 1–10. https://doi.org/10.1155/2012/127627

Lithari, C., Klados, M. A., Papadelis, C., Pappas, C., Albani, M., & Bamidis, P. D. (2012). How does the metric choice affect brain functional connectivity networks? Biomedical Signal Processing and Control, 7(3), 228–236. https://doi.org/10.1016/j.bspc.2011.05.004

Lithari, C., Klados, M. A., Pappas, C., Albani, M., Kapoukranidou, D., Kovatsi, L., Bamidis, P. D., & Papadelis, C. L. (2012). Alcohol Affects the Brain’s Resting-State Network in Social Drinkers. PLoS ONE, 7(10), e48641. https://doi.org/10.1371/journal.pone.0048641

Artikis, A., Bamidis, P. D., Billis, A., Bratsas, C., Frantzidis, C., Karkaletsis, V., Klados, M., Konstantinidis, E., Konstantopoulos, S., Kosmopoulos, D., & others. (2012). Supporting tele-health and AI-based clinical decision making with sensor data fusion and semantic interpretation: The USEFIL case study. International Workshop on Artificial Intelligence and NetMedicine, 21.

Frantzidis, C. A., Diamantoudi, M. D., Grigoriadou, E., Semertzidou, A., Billis, A., Konstantinidis, E., Klados, M. A., Vivas, A. B., Bratsas, C., Tsolaki, M., Pappas, C., & Bamidis, P. D. (2012). A Mahalanobis Distance Based Approach towards the Reliable Detection of Geriatric Depression Symptoms Co-existing with Cognitive Decline. In L. Iliadis, I. Maglogiannis, H. Papadopoulos, K. Karatzas, & S. Sioutas (Eds.), Artificial Intelligence Applications and Innovations SE - 2 (Vol. 382, pp. 16–25). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-33412-2_2

Moridis, C., Klados, M. A., Terzis, V., Economides, A., Karlovasitou, A., Bamidis, P., & Karabatakis, V. (2011). Audiovisual stimulation to influence alpha brain oscillations: An EEG study of gender differences. Neuroscience Letters, 500, e51. https://doi.org/10.1016/j.neulet.2011.05.217

Klados, M. A., Papadelis, C., Frantzidis, C., & Bamidis, P. (2011). Is the Artifact Rejection enhanced if the EOG signals are included in the ICA decomposition? Neuroscience Letters, 500, e50–e51. https://doi.org/10.1016/j.neulet.2011.05.216

Klados, M. A., Papadelis, C., Braun, C., & Bamidis, P. D. (2011). REG-ICA: A hybrid methodology combining Blind Source Separation and regression techniques for the rejection of ocular artifacts. Biomedical Signal Processing and Control, 6(3), 291–300. https://doi.org/10.1016/j.bspc.2011.02.001

Frantzidis, C., Semertzidou, A., Ladas, A., Karagianni, M., Lithari, C., Kyrillidou, A., Grigoriadou, E., Klados, M. A., Vivas, A., Kounti, F., Tsolaki, M., Pappas, C., & Bamidis, P. (2011). Detecting neurophysiological alterations during Mild Cognitive Impairment and Dementia using wavelet-based energy computation and a Mahalanobis Distance classifier. Neuroscience Letters, 500, e53. https://doi.org/10.1016/j.neulet.2011.05.225

Lithari, C., Frantzidis, C. A., Papadelis, C., Vivas, A. B., Klados, M. A., Kourtidou-Papadeli, C., Pappas, C., Ioannides, A. A., & Bamidis, P. D. (2010). Are females more responsive to emotional stimuli? A neurophysiological study across arousal and valence dimensions. Brain Topography, 23(1), 27–40. https://doi.org/10.1007/s10548-009-0130-5

Lithari, C., Klados, M. A., & Bamidis, P. D. (2010). Graph Analysis on Functional Connectivity Networks during an Emotional Paradigm. XII Mediterranean Conference on Medical and Biological Engineering and Computing, Figure 1, 115–118. https://doi.org/10.1007/978-3-642-13039-7_29

Klados, M. A., Bratsas, C., Frantzidis, C., Papadelis, C. L., & Bamidis, P. D. (2010). A Kurtosis-Based Automatic System Using Naïve Bayesian Classifier to Identify ICA Components Contaminated by EOG or ECG Artifacts. XII Mediterranean Conference on Medical and Biological Engineering and Computing, 49–52. https://doi.org/10.1007/978-3-642-13039-7_13

Peranonti, E. G. G., Klados, M. A. A., Papadelis, C. L. L., Kontotasiou, D. G. G., Kourtidou-Papadeli, C., & Bamidis, P. D. D. (2010). Can the EEG Indicate the FiO2 Flow of a Mechanical Ventilator in ICU Patients with Respiratory Failure? In XII Mediterranean Conference on Medical and Biological Engineering and Computing 2010 (Vol. 29, pp. 827–830). Springer. https://doi.org/10.1007/978-3-642-13039-7_209

Lithari, C., Frantzidis, C., Klados, M. A. A., & Bamidis, P. D. D. (2010). Does arousal and valence affect ERPs and brain connectivity? A study during an emotional paradigm. International Journal of Psychophysiology, 77(3), 266. https://doi.org/10.1016/j.ijpsycho.2010.06.101

Moridis, C. N., Klados, M. A., Kokkinakis, I. A., Terzis, V., Economides, A. A., Karlovasitou, A., Bamidis, P. D., & Karabatakis, V. E. (2010). The impact of audio-visual stimulation on alpha brain oscillations: An EEG study. Proceedings of the 10th IEEE International Conference on Information Technology and Applications in Biomedicine, 1–4. https://doi.org/10.1109/ITAB.2010.5687651

Lithari, C., Frantzidis, C. A. A., Papadelis, C., Klados, M. A. A., Pappas, C., & Bamidis, P. D. D. (2010). Small-world properties of brain Functional Connectivity Networks are affected by emotional stimuli. Proceedings of the 10th IEEE International Conference on Information Technology and Applications in Biomedicine, 1–4. https://doi.org/10.1109/ITAB.2010.5687815

Moridis, C. N., Klados, M. A., Terzis, V., Economides, A. A., Karabatakis, V. E., Karlovasitou, A., & Bamidis, P. D. (2010). Affective Learning: Empathetic Embodied Conversational Agents to Modulate Brain Oscillations. XII Mediterranean Conference on Medical and Biological Engineering and Computing, 675–678. https://doi.org/10.1007/978-3-642-13039-7_170

Komnidis, A., Konstantinidis, E., Stylianou, I., Klados, M. A., Kalfas, A., & Bamidis, P. D. (2010). A Modular Architecture of a Computer-Operated Olfactometer for Universal Use. XII Mediterranean Conference on Medical and Biological Engineering and Computing, 280–283. https://doi.org/10.1007/978-3-642-13039-7_70

Frantzidis, C. A., Bratsas, C., Klados, M. A., Konstantinidis, E., Lithari, C. D., Vivas, A. B., Papadelis, C. L., Kaldoudi, E., Pappas, C., & Bamidis, P. D. (2010). On the Classification of Emotional Biosignals Evoked While Viewing Affective Pictures: An Integrated Data-Mining-Based Approach for Healthcare Applications. IEEE Transactions on Information Technology in Biomedicine, 14(2), 309–318. https://doi.org/10.1109/TITB.2009.2038481

Frantzidis, C. A., Lithari, C. D., Klados, M. A., Pappas, C., & Bamidis, P. D. (2010). Synchronization analysis of short EEG data through time-evolving relative wavelet entropy and IAPS affective visual stimuli. Proceedings of the 10th IEEE International Conference on Information Technology and Applications in Biomedicine, 1–4. https://doi.org/10.1109/ITAB.2010.5687646

Bamidis, P. D., Frantzidis, C. A., Konstantinidis, E. I., Luneski, A., Lithari, C., Klados, M. A., Bratsas, C., Papadelis, C. L., & Pappas, C. (2009). An Integrated Approach to Emotion Recognition for Advanced Emotional Intelligence. 13th International Conference of HCI International, 565–574. https://doi.org/10.1007/978-3-642-02580-8_62

Klados, M. A., Papadelis, C., Lithari, C. D., & Bamidis, P. D. (2009). The Removal Of Ocular Artifacts From EEG Signals: A Comparison of Performances For Different Methods. In 4th European Conference of the International Federation for Medical and Biological Engineering (pp. 1259–1263). https://doi.org/10.1007/978-3-540-89208-3_300

Klados, M. A., Frantzidis, C., Vivas, A. B., Papadelis, C., Lithari, C., Pappas, C., & Bamidis, P. D. (2009). A Framework Combining Delta Event-Related Oscillations (EROs) and Synchronisation Effects (ERD/ERS) to Study Emotional Processing. Computational Intelligence and Neuroscience, 2009, 1–16. https://doi.org/10.1155/2009/549419

Bratsas, C., Frantzidis, C. A., Klados, M., Papadelis, C., Pappas, C., & Bamidis, P. D. (2009). Towards a semantic framework for an integrative description of neuroscience patterns and studies: a case for emotion-related data. Studies in Health Technology and Informatics, 150, 322–326. https://doi.org/10.3233/978-1-60750-044-5-322

Klados, M. a., Papadelis, C. L., & Bamidis, P. D. (2009). REG-ICA: A new hybrid method for EOG Artifact Rejection. 2009 9th International Conference on Information Technology and Applications in Biomedicine, 1–4. https://doi.org/10.1109/ITAB.2009.5394295

 

back
Change your Cookies Preferences